Total Record - 1

Print this rrecord

 
ProGlyProt ID
BC128
Organism Information
Organism Name
Campylobacter jejuni subsp. jejuni 81-176
Domain
Bacteria
Classification
Family: Campylobacteraceae
Order: Campylobacterales
Class: Epsilonproteobacteria
Division or phylum: "Proteobacteria"
Taxonomic ID (NCBI)
 
 
Genome Sequence(s)
GenBank
EMBL
Organism Additional Information
Campylobacter jejuni is a microaerophilic, Gram-negative, human pathogen that is the major cause of bacterial food-borne diarrhoea (gastroenteritis). It is most frequently responsible for a form of post-infection neuromuscular paralysis known as Guillain Barre' syndrome. It also leads to an immunoproliferative small intestine disease that is a rare malignant lymphoma of the intestine. Motility is essential for pathogenicity.
 
 
Gene Information
Gene Name
flaA (CJJ81176_1339)
NCBI Gene ID
GenBank Gene Sequence
 
 
Protein Information
Protein Name
Flagellin (FlaA)
UniProtKB/SwissProt ID
NCBI RefSeq
EMBL-CDS
UniProtKB Sequence
Sequence length
576 AA
Subcellular Location
Secreted
Function
It is the subunit protein which is polymerized into the flagellar filaments. Motility mediated by flagella is essential for virulence.
 
 
Protein Structure
Homology Model
Homology Model File
 
 
Glycosylation Status
Glycosylation Type
O (Ser) linked
Experimentally Validated Glycosite(s) in Full Length Protein
S207, S343, S348, T394, S398, S401, S405, S409, S418, S426, S430, S437, S441, S449, S452, S455, S458, S461, T482
Experimentally Validated Glycosite(s ) in Mature Protein
S206, S342, S347, T393, S397, S400, S404, S408, S417, S425, S429, S436, S440, S448, S451, S454, S457, S460, T481
Glycosite(s) Annotated Protein Sequence
>tr|Q2M5R2|Q2M5R2_CAMJJ FlaA OS=Campylobacter jejuni subsp. jejuni serotype O:23
/36 (strain 81-176) GN=flaA PE=4 SV=1 MGFRINTNVAALNAKANSDLNAKSLDASLSRLSSGLR
INSAADDASGMAIADSLRSQANT LGQAISNGNDALGILQTADKAMDEQLKILDTIKTKATQAAQDGQSLKTRTM
LQADINKLM EELDNIANTTSFNGKQLLSGNFTNQEFQIGASSNQTVKATIGATQSSKIGVTRFETGAQS FTS
GVVGLTIKNYNGIEDFKFDNVVIS*(207)TSVGTGLGALAEEINKSADKTGVRATYDVKTTG VYAIKEGTT
SQEFAINGVTIGKIEYKDGDGNGSLISAINAVKDTTGVQASKDENGKLVLT SADGRGIKITGDIGVGSGILANQ
KENYGRLSLVKNDGRDINIS*(343)GTNLS*(348)AIGMGTTDMISQ SSVSLRESKGQISATNADAMG
FNSYKGGGKFVFT*(394)QNVS*(398)SIS*(401)AFMS*(405)AQGS*(409)GFSRGSGF
S*(418)VGSGKNLS*(426)VGLS*(430) QGIQIIS*(437)SAAS*(441) MSNTYVVS*
(449)
AGS*(452) GFS*(455)SGS*(458) GNS*(461)QFAALKTTAANTTDETAGVTT*(
482)
LKGAMAVMDIAETAITNLDQIRADIGSIQNQVTSTINNITVTQVNVKAAESQIRDVDFASESANYSKANIL
AQSGSYAMAQANSSQQNVLRLLQ
Sequence Around Glycosites (21 AA)
EDFKFDNVVISTSVGTGLGAL
VKNDGRDINISGTNLSAIGMG
RDINISGTNLSAIGMGTTDMI
SYKGGGKFVFTQNVSSISAFM
GGKFVFTQNVSSISAFMSAQG
FVFTQNVSSISAFMSAQGSGF
QNVSSISAFMSAQGSGFSRGS
SISAFMSAQGSGFSRGSGFSV
GSGFSRGSGFSVGSGKNLSVG
GFSVGSGKNLSVGLSQGIQII
GSGKNLSVGLSQGIQIISSAA
VGLSQGIQIISSAASMSNTYV
QGIQIISSAASMSNTYVVSAG
AASMSNTYVVSAGSGFSSGSG
MSNTYVVSAGSGFSSGSGNSQ
TYVVSAGSGFSSGSGNSQFAA
VSAGSGFSSGSGNSQFAALKT
GSGFSSGSGNSQFAALKTTAA
NTTDETAGVTTLKGAMAVMDI
Glycosite Sequence Logo
Glycosite Sequence Logo
Technique(s) used for Glycosylation Detection
ESMS (electrospray mass spectrometry); 10%- 6.5 kDa- mass excess detected
Technique(s) used for Glycosylated Residue(s) Detection
A combination of μLC-ESMS (liquid chromatography-electrospray mass spectrometry) and MS-MS (tandem mass spectrometry) analyses; 10 out of 19 glycosylation sites were defined using nano-ESMS after base (NH4OH)-catalyzed β-elimination.
Protein Glycosylation- Implication
Glycosylation is required for flagellar filament formation. Certain glycans mediate filament-filament interactions resulting in AAG (autoagglutination) and other glycans appear to be critical for structural subunit-subunit interactions within the filament. Modification with pseudaminic acid and derivatives is essential for targeting and/or secretion of flagellin. Also, specific structural modifications to the flagellin glycoform have been shown to be involved in the biological fitness of C. jejuni in colonization of chickens.
 
 
Glycan Information
Glycan Annotation
Glycan represents 10% of the total mass of the protein.
Major glycan is pseudaminic acid and its derivatives, Pse5Pr7Pr, Pse5Ac7Ac8OAc, Pse5Am7Ac.
Pse5Ac7Ac (5,7-diacetamido-3,5,7,9 - tetradeoxy-L-glycero-L-manno- nonulosonic acid), with 5-acetamidino pseudaminic acid (Pse5Am7Ac) and 5,7-N-(2,3-dihydroxyproprionyl)-pseudaminic acid (Pse5Pr7Pr) are also present. In addition, novel glycans, Pse5Am7Ac8GlnAc and Pse5Ac7Ac8OAc, have also been found. S398 and S405 carry Pse5Pr7Pr moiety while T394, S401 and S409 are modified with Pse5Ac7Ac residues. Pse5Ac7Ac is also written as Pse5NAc7NAc (Pse). Microheterogeneity in glycosylation has been observed.
Technique(s) used for Glycan Identification
Nano-ESMS and NMR analysis of HPLC fractions of trypsin digested glycopeptides including COSY(correlated spectroscopy) and NOESY (nuclear Overhauser effect spectroscopy).
 
 
Protein Glycosylation linked (PGL) gene(s)
Characterized Accessory Gene(s)
PseA, PseB, PseC, PseF, PseG, PseH, PseI are the enzymes required for CMP-Pse5NAc7NAc/CMP-Pse5NAc7Am production. PseB and PseC (dehydratase/aminotransferase) catalyze the first two steps of Pse5NAc7NAc (Pse) synthesis. PseI is the Pse synthase.
 
 
Literature
Reference(s)
1) Maita, N., Nyirenda, J., Igura, M., Kamishikiryo, J. and Kohda, D. (2010) Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases. J Biol Chem, 285, 4941-4950. [PubMed: 20007322]
2) Ewing, C.P., Andreishcheva, E. and Guerry, P. (2009) Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176. J Bacteriol, 191, 7086-7093. [PubMed: 19749047]
3) McNally, D.J., Hui, J.P., Aubry, A.J., Mui, K.K., Guerry, P., Brisson, J.R., Logan, S.M. and Soo, E.C. (2006) Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach. J Biol Chem, 281, 18489-18498. [PubMed: 16684771]
4) Goon, S., Kelly, J.F., Logan, S.M., Ewing, C.P. and Guerry, P. (2003) Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol Microbiol, 50, 659-671. [PubMed: 14617187]
5) Logan, S.M., Kelly, J.F., Thibault, P., Ewing, C.P. and Guerry, P. (2002) Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol Microbiol, 46, 587-597. [PubMed: 12406231]
6) Thibault, P., Logan, S.M., Kelly, J.F., Brisson, J.R., Ewing, C.P., Trust, T.J. and Guerry, P. (2001) Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J Biol Chem, 276, 34862-34870. [PubMed: 11461915]
7) Doig, P., Kinsella, N., Guerry, P. and Trust, T.J. (1996) Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. Mol Microbiol, 19, 379-387. [PubMed: 8825782]
Additional Comments
Pseudaminic acid (Pse5Ac7Ac) has also been identified in the LPS of bacteria.
Pseudomonas pilin also carries pseudaminic acid like glycan (ProGlycProt ID BC166).
Sequon features: No specific sequence features except that all but one of total 19 O-glycosylated residues are restricted to the hydrophobic central, surface-exposed domain of flagellin when folded in the filament. It has been suggested that the local hydrophobicity upstream of Ser/Thr residues partially influences the site of glycosylation.
Glycosylation was detected in other strains by biotin-hydrazide labeling after periodate oxidation as early as 1996 (Ref. no. 7). It was the first report of eubacterial flagellin glycosylation.
Year of Identification
2001
Year of Validation
2001
 
 
Copyright @ 2011 IMTECH
This site is best viewed in Mozilla Firefox, Internet Explorer 6 and above at screen resolution of 1024 x 768 and above.