Total Record - 1
 
ProGlyProt ID
AC101
Organism Information
Organism Name
Halobacterium salinarum (halobium) R1M1/NRC-1
Domain
Archaea
Classification
Family: Halobacteriaceae
Order: Halobacteriales
Class: Halobacteria or Halomebacteria
Division or phylum: "Euryarchaeota"
Taxonomic ID (NCBI)
 
 
Genome Sequence(s)
GenBank
EMBL
 
 
Gene Information
Gene Name
csg (VNG_2679G)
NCBI Gene ID
GenBank Gene Sequence
 
 
Protein Information
Protein Name
Cell surface glycoprotein (CSG) or S-layer glycoprotein
UniProtKB/SwissProt ID
NCBI RefSeq
EMBL-CDS
UniProtKB Sequence
>sp|Q9HM69|CSG_HALSA Cell surface glycoprotein OS=Halobacterium salinarium GN=cs
g PE=1 SV=2MTDTTGKLRAVLLTALMVGSVIGAGVAFTGGAAAANASDLNDYQRFNENTNYTYSTASEDGKTEG
SVASGATIFQGEEDVTFRKLDNEKEVSPATLSRTGGSDEGVPLQMPIPEDQSTGSYDSNGPDNDEADFGVTVQSPS
VTMLEVRNNADNDVTGGVLNTQQDESSIAVDYNYYAAEDLELTVEDEDGLDVTDEILAADQSGGAYEDGTGNNGPN
TLRFDIDPNNVDAGDYTVSVEGVEDLDFGDATESASVTISSSNKASLNLAEDEVVQGANLKYTIENSPEGNYHAVT
IDSSDFRDSSSGADAAKVMRSVGDTVDTGLVVDNDSTTEIVDDYENTSISDVDYAYAIVEIDDGNGVGSIETQYLD
DSSADIDLYPASDTEDAPDYVNSNEELTNGSALDGVSTDDDTDFDVTQGDITLDNPTGAYVVGSEVDINGTANEGT
DDVVLYARDNNDFELVTVDGEKSIEVDSDDTFEEEDITLSDGDKGGDDILGLPGTYRLGIIAKSDAVNSSGGVKDN
IDTSDFNQGVSSTSSIRVTDTELTASFETYNGQVADDDNQIDVEGTAPGKDNVAAIIIGSRGKVKFQSISVDSDDT
FDEEDIDISELRQGSASAHILSSGRDGKFGEDTANSISDLEDEVGNYTSGSPTGDQIRDRILSNTVDDTASDDLIV
TQQFRLVDGLTTIEATEGGEAGGSLTVMGTTNRKADDNTITVELLQGDASIEINSTDEWNSDGQWSVDVPLSNVEP
GNYTVEADDGDNTDRQNVEIVEELEEPDQTTVDQPENNQTMTTTMTETTTETTTEMTTTQENTTENGSEGTSDGES
GGSIPGFGVGVALVAVLGAALLALRQN
Sequence length
852 AA
Subcellular Location
Surface
Function
In Archaea, which do not possess other cell wall components, the S-layer has been implicated in the maintenance of the cell integrity and in the stabilization as well as the protection of the cell against mechanical and osmotic stresses or extreme pH conditions. It is also predicted that the S-layer maintains or even determines the cell shape.
 
 
Glycosylation Status
Glycosylation Type
N (Asn) linked (O, Thr-linked residues not known)
Experimentally Validated Glycosite(s) in Full Length Protein
(Signal peptide: 1-34) N36, N339, N398, N438, N513, N643, N727, N751, N787, N811, N815 (N36, N513 and N643 were confirmed glycosylated directly by glycopeptide sequence analysis; reference no. 3 mentions that ten sulfated saccharides are N-linked to the protein implying that most or all sites are glycosylated.)
Experimentally Validated Glycosite(s ) in Mature Protein
N2, N305, N364, N404, N479, N609, N693, N717, N753, N777, N781
Glycosite(s) Annotated Protein Sequence
>sp|Q9HM69|CSG_HALSA Cell surface glycoprotein OS=Halobacterium salinarium GN=cs
g PE=1 SV=2
MTDTTGKLRAVLLTALMVGSVIGAGVAFTGGAAAAN*(36)ASDLNDYQRFNENTN
YTYSTASED GKTEGSVASGATIFQGEEDVTFRKLDNEKEVSPATLSRTGGSDEGVPLQMPIPEDQSTGS YDS
NGPDNDEADFGVTVQSPSVTMLEVRNNADNDVTGGVLNTQQDESSIAVDYNYYAAED LELTVEDEDGLDVTDEI
LAADQSGGAYEDGTGNNGPNTLRFDIDPNNVDAGDYTVSVEGV EDLDFGDATESASVTISSSNKASLNLAEDEV
VQGANLKYTIENSPEGNYHAVTIDSSDFR DSSSGADAAKVMRSVGDTVDTGLVVDNDSTTEIVDDYEN*(339
)
TSISDVDYAYAIVEIDDGNGV GSIETQYLDDSSADIDLYPASDTEDAPDYVNSNEELTN*(398)GSALD
GVSTDDDTDFDVTQGDI TLDNPTGAYVVGSEVDIN*(438)GTANEGTDDVVLYARDNNDFELVTVDGEKSI
EVDSDDTFEEE DITLSDGDKGGDDILGLPGTYRLGIIAKSDAVN*(513)SSGGVKDNIDTSDFNQGVSSTS
SIRVT DTELTASFETYNGQVADDDNQIDVEGTAPGKDNVAAIIIGSRGKVKFQSISVDSDDTFDE EDIDISE
LRQGSASAHILSSGRDGKFGEDTANSISDLEDEVGN*(643) YTSGSPTGDQIRDRILS NTVDDTASDDLI
VTQQFRLVDGLTTIEATEGGEAGGSLTVMGTTNRKADDNTITVELLQG DASIEIN*(727)STDEWNSDGQW
SVDVPLSNVEPGN*(751)YTVEADDGDNTDRQNVEIVEELEEPDQTT VDQPENN*(787)QTMTTTMTE
TTTETTTEMTTTQEN*(811)TTEN*(815)GSEGTSDGESGGSIPGFGVGVALVA VLGAALLALRQN
Sequence Around Glycosites (21 AA)
VAFTGGAAAANASDLNDYQRF
STTEIVDDYENTSISDVDYAY
DYVNSNEELTNGSALDGVSTD
AYVVGSEVDINGTANEGTDDV
LGIIAKSDAVNSSGGVKDNID
SISDLEDEVGNYTSGSPTGDQ
LLQGDASIEINSTDEWNSDGQ
DVPLSNVEPGNYTVEADDGDN
DQTTVDQPENNQTMTTTMTET
TTTEMTTTQENTTENGSEGTS
MTTTQENTTENGSEGTSDGES
Glycosite Sequence Logo
Glycosite Sequence Logo
Technique(s) used for Glycosylation Detection
Periodate-arsenite-Schiff reagent staining and carbohydrate analysis using GC.
Technique(s) used for Glycosylated Residue(s) Detection
Glycopeptide sequencing
Protein Glycosylation- Implication
It is the pattern and the chemical nature of the N-linked saccharides which exhibit a drastic change at the transition from moderate to extreme halophily. This different pattern of glycosylation (sulfated glucuronic acids and a repeating unit saccharide) introduces at least 120 additional negative charges into the glycoprotein. The protruding highly negatively charged loops are required for stabilization in high salt concentrations. Thus, the sulfated repeating unit saccharide is required for stabilization of the rod shaped morphology.
 
 
Glycan Information
Glycan Annotation
Linkages: βGalNAc- Asn, Glc-Asn, Gal-Thr.
Total carbohydrate content is approximately 10 to 12% of 200 kDa S layer glycoprotein.
N glycosylated (at position N2) with GlcNAc-linked repeating (10-15 repeats) sulfated pentasaccharide and with sulfated oligosaccharides: (GlcA(OSO3-)-[β1→4GlcA(OSO3-)]2-β1→4Glc-Asn) at ten other poistions.
Abut 20 neutral di/ tri- saccharides α-D-Glc-(1→2)-Gal-(1→ or (uronic acid, glucose)-galactose are O-glycosidically attached to clustered threonine residues (14) adjacent to the TM domain at the C terminus but precise position of O glycosylated residues is not known.
Technique(s) used for Glycan Identification
GC-MS (gas chromatography-mass spectrometry) analysis of peracetylated alditols.
 
 
Protein Glycosylation linked (PGL) gene(s)
OST Gene Name
aglB/stt3
OST NCBI Gene ID
OST GenBank Gene Sequence
OST Protein Name
AglB/STT3 subunit
OST UniProtKB/ SwissProt ID
OST NCBI RefSeq
OST EMBL-CDS
OST UniProtKB Sequence
>tr|B0R4T2|B0R4T2_HALS3 Oligosaccharyl transferase OS=Halobacterium salinarum (s
train ATCC 29341 / DSM 671 / R1) GN=stt3 PE=4 SV=1MSETTDASGLSAGLPSRALGALKDWY
HVPVLGAVLAFMFWVRVQSWDNFLQNGEVYLSGNDAYYHLRQVTYTVHHFPETMPFDPWTNFPHGTLAGQFGTLFD
QILAAVALVVGMGSPSEHTIAMTLLLAPPVFGALLVVPTYVMGRRIAGRLGGLFGAVILGLLPGYFLQRTLAGAAD
HNGAEPLFMTLAVVGLMVALSVAEREKPVFEQFRAWDATGLRDVVGWSVLAGVATAVYMWVWPPGVLLVGIFGAFF
LVKLVGDYVTGTSPDHVAVVGAVSMTTTALLMFAPLGESGFGVSGFSFLQPVFALGVAVGCVVLAWLARVFDERSL
SPAAYVATVAGTLVVVVGALALVAPGFWSSLQSNLLNYIGLSSTADTRTIGEAQPFLFRTGRYGLGMFGVVFLEYG
TAFFSALVGAGAILLKPHLTSGSVRRIVGVAGATAVLAIVAVSPAVPAAIGGVVGLGGQLTALLIAAVVLAAIAAT
GQYDADKLLLVVWGAFVTSAAFTQVRFNYYLVVPVVVLNAYVLRAVLAAVDLDRPVAAIEGVSWYQVGTVVIVALI
VLVPVAAPAVAEATNNDSASGPVSPIKLSNNQNQPVPLQSAITAGQGQGPGGVVAWDDAMDWYQSHTPKQGTYGGA
DNADALDYNGTYSQTEDFDYPAGSFGVLSWWDYGHWMTVQGHAIPHANPFQQGATSAANFLLADDEQQSESVLADI
EEDDAKNRYVAVDWKMVMPPLPYLSSGQSKFSAPVVFYDGPRDLSQGDFYQQAYNADWEENRISNARFFRQSPLLK
KQAYYESMMVRLYRYHGSAKQAEPVVADWRRSVNTGQGTAAAFDAATNNTKQFDSMADAKAYVRNDSTAQIGGTGS
LPEADVAALEHYRLVGVSANHTAPANLWYLGGELSTEYYPTSVKLFERVDGAAVTGTGPANTTVKASVELNLTQME
SNEGTHPSFTYTQYADTDADGEFTMRLPYSTTGYDELGPANGHTNVSVRATGPYTFTAGDQAGNASAVAADTASVS
ESQVVSDEATPVTVSLDPTGGAAGNETATNGSVATPTADGESADGDGTDADTTNSTAGALPARVGAELTHRGH
OST EC Number (BRENDA)
PGL Additional Links
 
 
Literature
Reference(s)
1) Zeitler, R., Hochmuth, E., Deutzmann, R. and Sumper, M. (1998) Exchange of Ser-4 for Val, Leu or Asn in the sequon Asn-Ala-Ser does not prevent N-glycosylation of the cell surface glycoprotein from Halobacterium halobium. Glycobiology, 8, 1157-1164. [PubMed: 9858637]
2) Mengele, R. and Sumper, M. (1992) Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles. J Biol Chem, 267, 8182-8185. [PubMed: 1569073]
3) Lechner, J. and Sumper, M. (1987) The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. J Biol Chem, 262, 9724-9729. [PubMed: 3036870]
4) Paul, G., Lottspeich, F. and Wieland, F. (1986) Asparaginyl-N-acetylgalactosamine. Linkage unit of halobacterial glycosaminoglycan. J Biol Chem, 261, 1020-1024. [PubMed: 3944078]
5) Lechner, J., Wieland, F. and Sumper, M. (1985) Transient methylation of dolichyl oligosaccharides is an obligatory step in halobacterial sulfated glycoprotein biosynthesis. J Biol Chem, 260, 8984-8989. [PubMed: 4019460]
6) Wieland, F., Paul, G. and Sumper, M. (1985) Halobacterial flagellins are sulfated glycoproteins. J Biol Chem, 260, 15180-15185. [PubMed: 3934156]
7) Wieland, F., Heitzer, R. and Schaefer, W. (1983) Asparaginylglucose: Novel type of carbohydrate linkage. Proc Natl Acad Sci U S A, 80, 5470-5474. [PubMed: 16593364]
8) Wieland, F., Dompert, W., Bernhardt, G. and Sumper, M. (1980) Halobacterial glycoprotein saccharides contain covalently linked sulphate. FEBS Lett, 120, 110-114. [PubMed: 7439381]
9) Mescher, M.F. and Strominger, J.L. (1976) Purification and characterization of a prokaryotic glucoprotein from the cell envelope of Halobacterium salinarium. J Biol Chem, 251, 2005-2014. [PubMed: 1270419]
10) Mescher, M.F., Strominger, J.L. and Watson, S.W. (1974) Protein and carbohydrate composition of the cell envelope of Halobacterium salinarium. J Bacteriol, 120, 945-954. [PubMed: 4455689]
Additional Comments
First prokaryotic glycoprotein that was characterized experimentally for the site of glycosylation as well as glycan attached. The features unique to N glycosylation in H. salinarum are: the majority of glycans are linked via glucose instead of GlcNAc or GalNAc to the Asn in protein; presence of sulfated oligosaccharides that bind to a C60-dolichol monophosphate carrier lipid; protein-associated glycans differ mainly in terminal sugars.
S-layer proteins of H. salinarum and H. volcanii are the examples of a less understood and rare type of glycosylation namely O glycosylation in Archaea. A cluster of 14 threonine residues (yet uncharacterized) present at hydrophobic C-terminus membrane anchor has also been reported glycosylated with glucosylgalactose disaccharides in S-layer glycoprotein of H. salinarum. Bacitracin inhibits growth of Halobacteria.
Sequon features: excluding the only unique Asn-GalNAc site, all sequon sequences are preceded by 1 or even 2 negatively charged amino acid residues.
Two different N-glycosyltransferases have been suggested to be functioning in H. salinarum, one of which does not use the typical consensus sequence Asn-Xaa-Ser/Thr necessary for all other N-glycosyltransferases. Zeitler et al (1998) showed that glycosylation of N479 is abolished by replacing S481 in the sequence NSS with V. Therefore, they concluded that the N-glycosyltransferase acting at N479 is a conventional one requiring the hydroxyamino acid in the N-glycosylation sequon. In contrast, the transferase catalyzing glycosylation at N2 is not dependent on a hydroxyamino acid that follows the next but one to Asn, and is, thus, novel.
Year of Identification
1974
Year of Validation
1987
 
 
Copyright @ 2011 IMTECH
This site is best viewed in Mozilla Firefox, Internet Explorer 6 and above at screen resolution of 1024 x 768 and above.