ProGP217 (AcrA or CmeA)

Home -> ProGPdb -> Search ProGP -> Display data

ProGP ID ProGP217 (AcrA or CmeA)
Validation Status Characterized
Organism Information
Organism NameCampylobacter jejuni NCTC 11168 serotype O:2
Domain Bacteria
Classification Phylum : Proteobacteria
Class : Epsilonproteobacteria
Orders : Campylobacterales
Family : Campylobacteraceae
Genus : Campylobacter
Species : jejuni
Subspecies : jejuni
Strain : NCTC 11168 serotype O:2
Taxonomic ID (NCBI) 192222
Genome Information
GenBank AL111168.1
EMBL AL111168
Organism Additional Information Campylobacter jejuni is a microaerophilic, Gram-negative, human pathogen that is the major cause of bacterial food-borne diarrhoea (gastroenteritis). It is most frequently responsible for a form of post-infection neuromuscular paralysis known as Guillain Barre' syndrome. It also leads to an immunoproliferative small intestine disease that is a rare malignant lymphoma of the intestine. Motility is essential for pathogenicity.
Gene Information
Gene NameCj0367c (acrA/cmeA)
NCBI Gene ID 904690
GenBank Gene Sequence NC_002163
Protein Information
Protein NameAcrA or CmeA
UniProtKB/SwissProt ID Q0PBE3
NCBI RefSeq YP_002343804.1
EMBL-CDSCAL34517.1
UniProtKB Sequence >tr|Q0PBE3|Q0PBE3_CAMJE Periplasmic fusion protein CmeA OS=Campylobacter jejuni GN=cmeA PE=4 SV=1 MKLFQKNTILALGVVLLLTACSKEEAPKIQMPPQPVTTMSAKSEDLPLSFTYPAKLVSDY DVIIKPQVSGVIENKLFKAGDKVKKGQTLFIIEQDKFKASVDSAYGQALMAKATFENASK DFNRSKALFSKSAISQKEYDSSLATFNNSKASLASARAQLANARIDLDHTEIKAPFDGTI GDALVNIGDYVSASTTELVRVTNLNPIYADFFISDTDKLNLVRNTQNGKWDLDSIHANLN LNGETVQGKLYFIDSVIDANSGTVKAKAIFDNNNSTLLPGAFATITSEGFIQKNGFKVPQ IAVKQNQNDVYVLLVKNGKVEKSSVHISYQNNEYAIIDKGLQNGDKIILDNFKKIQVGSE VKEIGAQ
Sequence length 367 AA
Subcellular LocationPeriplasm
Function It is a fusion lipoprtein involved in antibiotic resistance. Part of the CmeABC multidrug efflux system.
Glycosylation Status
Glycosylation Type N- (Asn) linked
Experimentally Validated Glycosite(s) in Full Length ProteinN123, N273
Experimentally Validated Glycosite(s ) in Mature ProteinN123, N273
Glycosite(s) Annotated Protein Sequence >tr|Q0PBE3|Q0PBE3_CAMJE Periplasmic fusion protein CmeA OS=Campylobacter jejuni GN=cmeA PE=4 SV=1 MKLFQKNTILALGVVLLLTACSKEEAPKIQMPPQPVTTMSAKSEDLPLSFTYPAKLVSDY DVIIKPQVSGVIENKLFKAGDKVKKGQTLFIIEQDKFKASVDSAYGQALMAKATFENASK DFN*(123)RSKALFSKSAISQKEYDSSLATFNNSKASLASARAQLANARIDLDHTEIKAPFDGTI GDALVNIGDYVSASTTELVRVTNLNPIYADFFISDTDKLNLVRNTQNGKWDLDSIHANLN LNGETVQGKLYFIDSVIDANSGTVKAKAIFDNN*(273)NSTLLPGAFATITSEGFIQKNGFKVPQ IAVKQNQNDVYVLLVKNGKVEKSSVHISYQNNEYAIIDKGLQNGDKIILDNFKKIQVGSE VKEIGAQ
Sequence Around Glycosites (21 AA) ATFENASKDFNRSKALFSKSA
TVKAKAIFDNNNSTLLPGAFA
ProGP Web Logo
Technique(s) used for Glycosylation DetectionImmunoblot analysis using glycosylation-specific R12 antiserum
Technique(s) used for Glycosylated Residue(s) Detection Site-directed mutagenesis
Glycan Information
Glycan Annotation Linkage: Bac-Asn.
1406 Da heptasaccharide composed of GalNAc-α1,4-GalNAc-α1,4-[Glcβ1,3-]GalNAc-α1,4-GalNAc-α1,4-GalNAc-α1,3-Bac-β1,N-Asn-Xaa, where Bac is bacillosamine, 2,4-diacetamido-2,4,6-trideoxyglucopyranose.
BCSDB ID 23625
GlyTouCan G58528CE
Technique(s) used for Glycan Identification 1H, 13C NMR spectroscopy- one dimensional TOCSY (total correlation spectroscopy) and NOESY (nuclear Overhauser effect spectroscopy); HMBC (heteronuclear multiple bond coherence), HMQC (heteronuclear multiple quantum correlation) spectra.
Protein Glycosylation linked (PGL) gene(s)
OST Gene NamePglB
OST ProGT IDProGT10
Characterized Accessory Gene(s)PglA, PglJ, PglH, PglI, PglC are glycosyltransferases involved in the heptasaccharide assembly. PglFED are the bacillosamine biosynthetic enzymes. PglK is a flippase.
Accessory Gene(s)Progt IDProGT10.1, ProGT10.2, Pro
Additional CommentAcrA is a native glycoprotein. However, its glycosylation was characterized in E. coli in which C. jejuni glycosylation machinery had been reconstituted.
Sequon feature: The consensus sequence for the C jejuni PglB is D/E-X'-N-X"-S/T (where X' and X" stand for any amino acid except proline) which is glycosylated when located in flexible, exposed structural elements. Tripeptide sequence NLT too has been found to be modified in vitro.
Literature
Year of Identification2002
Year of Identification Month Wise2002.11.29
Year of Validation 2002
ReferenceMaita, N., Nyirenda, J., Igura, M., Kamishikiryo, J. and Kohda, D., 2010. Comparative Structural Biology of Eubacterial and Archaeal Oligosaccharyltransferases 2. Journal of Biological Chemistry, 285(7), pp.4941-4950.
Corresponding Author Daisuke Kohda
ContactDivision of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
ReferenceOlivier, N.B., Chen, M.M., Behr, J.R. and Imperiali, B., 2006. In vitro biosynthesis of UDP-N, N ‘-diacetylbacillosamine by enzymes of the Campylobacter jejuni general protein glycosylation system. Biochemistry, 45(45), pp.13659-13669.
Corresponding Author Barbara Imperiali
ContactDepartment of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
ReferenceNita-Lazar, M., Wacker, M., Schegg, B., Amber, S. and Aebi, M., 2005. The NXS/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology, 15(4), pp.361-367.
Corresponding Author Markus Aebi
ContactInstitute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, Zürich, CH-8092 Zürich, Switzerland.
ReferenceWacker, M., Linton, D., Hitchen, P.G., Nita-Lazar, M., Haslam, S.M., North, S.J., Panico, M., Morris, H.R., Dell, A., Wren, B.W. et al. (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science, 298, 1790-1793. [PubMed: 12459590]
Corresponding Author Markus Aebi
ContactInstitute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, Zürich, CH-8092 Zürich, Switzerland.
ReferenceScott, N.E., Parker, B.L., Connolly, A.M., Paulech, J., Edwards, A.V., Crossett, B., Falconer, L., Kolarich, D., Djordjevic, S.P., Højrup, P. and Packer, N.H., 2011. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Molecular & cellular proteomics, 10(2), pp.S1-S18.
Corresponding Author Stuart J Cordwell
ContactSchool of Molecular and Microbial Biosciences, University of Sydney, Sydney, Australia
ReferenceKowarik, M., Young, N.M., Numao, S., Schulz, B.L., Hug, I., Callewaert, N., Mills, D.C., Watson, D.C., Hernandez, M., Kelly, J.F. and Wacker, M., 2006. Definition of the bacterial N‐glycosylation site consensus sequence. The EMBO journal, 25(9), pp.1957-1966.
Corresponding Author Markus Aebi
ContactInstitute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, Zürich, CH-8092 Zürich, Switzerland.